Being an extremely vigorous process involving a continuous intense bubble activity, repetitive pool boiling study is essential for many industrial applications. In this work, we have utilized highly thermally conductive and highly wettable graphene nanoplatelets (GNP) to form GNP-Copper based composite coatings for enhancing the pool boiling heat transfer performance. A multi-step electrodeposition technique was implemented to develop robust coatings on the copper substrates. Repetitive pool boiling studies were conducted on the 2% GNP-Cu coating which achieved the highest CHF of 286 W/cm2 and HTC of 204 kW/m2-°C. After investigating the effect of repetitive boiling on deposited GNP layers and morphology, it was found that GNP were reduced to form r-GNP (reduced GNP) and small increment in pore sizes was observed. Additionally, with repetitive boiling, it was observed that the heat transfer coefficient was continuously increased and compared to pristine copper surface 2% GNP-Cu coating yielded ∼456% increment in HTC at the end of third repetitive test.

This content is only available via PDF.
You do not currently have access to this content.