Continuous reaction calorimetry in microreactors is a powerful technology for the investigation of fast and exothermic reactions regarding thermokinetic data. A Seebeck element based reaction calorimeter has been designed, manufactured, and its performance has been shown in previous works using neutralization reaction in a microreactor made from PVDF-foils [1]. The Seebeck elements allow for spatial and temporal resolution of heat flux profiles across the reactor. Therefore, hot spots and regions of main reaction progress are detected. Finally, heat of reaction has been determined in good agreement with literature data [1].

However, more information can be retrieved related to chemical transformations using the continuously operated reaction calorimeter. In this work, mixing time scale is determined for instantaneous and exothermic reactions. Volumetric flow rate is varied and the region of main reaction progress is shifted within the microreactor. The reaction occurs near the reactor outlet for low flow rates. Here, mixing is dominated by diffusion. However, the reaction and hot spot are shifted towards the reactor inlet for high flow rates as convective mixing regime is reached and secondary flow profile with Dean vortices develop due to curvature of the reaction channel. Finally, mixing time scales can be derived from the location of heat flux peaks. Results display a decrease in mixing time at increased flow rates. Additionally, passive micromixers can be evaluated regarding their efficiency and comparison can be drawn.

Moreover, pumps can be characterized and evaluated regarding low-pulsation dosing using the Seebeck element based reaction calorimeter.

This content is only available via PDF.
You do not currently have access to this content.