Membrane based energy recovery ventilators (ERV) can be used to recover sensible and latent energy from exhaust-to-supply air in building applications. These typically consist of parallel layers of membrane separating the air streams, across which heat and moisture are exchanged. Reducing equipment cost and size remain a key challenge for continued commercialization and adoption of these devices. As membrane effectiveness improves, the air-side heat resistance can begin to dominate transport. To mitigate this, minichannel flow passages (DH < 2 mm) can be used to reduce convective heat and mass transfer. Channels can be formed through direct manipulation of membrane (e.g., pleating, corrugating, etc.), or through the use of spacer or other insert. The use of multiple parallel channels can result in large spatial variations in driving temperature and humidity ratio differences in a single layer membrane, impacting overall transport. Furthermore, the local membrane mass transfer resistance is typically a function of the surface temperature and relative humidity and not a constant value throughout the device. Accurate design models are required to appropriately size ERV equipment and maximize performance for a given equipment volume. Thus, the goal of this study is to use simulation tools to understand how the use of parallel mini- and microchannels and non-uniform membrane properties effect the performance of a membrane ERV in a building application. A two dimensional coupled heat and mass transfer resistance network model is developed. The model is compared against existing data from more detailed CFD analysis, and used to parametrically investigate effects different inlet conditions on device performance.
Skip Nav Destination
ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels
June 10–13, 2018
Dubrovnik, Croatia
Conference Sponsors:
- Fluids Engineering Division
ISBN:
978-0-7918-5119-7
PROCEEDINGS PAPER
Investigation of the Effect of Non-Uniform Membrane Properties on Performance of Mini/Microchannel Energy Recovery Ventilator Devices
Paul D. Armatis,
Paul D. Armatis
Oregon State University, Corvallis, OR
Search for other works by this author on:
Brian M. Fronk
Brian M. Fronk
Oregon State University, Corvallis, OR
Search for other works by this author on:
Paul D. Armatis
Oregon State University, Corvallis, OR
Brian M. Fronk
Oregon State University, Corvallis, OR
Paper No:
ICNMM2018-7615, V001T11A002; 7 pages
Published Online:
August 23, 2018
Citation
Armatis, PD, & Fronk, BM. "Investigation of the Effect of Non-Uniform Membrane Properties on Performance of Mini/Microchannel Energy Recovery Ventilator Devices." Proceedings of the ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels. ASME 2018 16th International Conference on Nanochannels, Microchannels, and Minichannels. Dubrovnik, Croatia. June 10–13, 2018. V001T11A002. ASME. https://doi.org/10.1115/ICNMM2018-7615
Download citation file:
20
Views
Related Proceedings Papers
Related Articles
Performance of an Absorber With Hydrophobic Membrane Contactor at Aqueous Solution-Water Vapor Interface
J. Thermal Sci. Eng. Appl (September,2010)
Heat and Mass Transfer Evaluation in the Channels of an Automotive Catalytic Converter by Detailed Fluid-Dynamic and Chemical Simulation
J. Heat Transfer (April,2007)
Using Direct Simulation Monte Carlo With Improved Boundary Conditions for Heat and Mass Transfer in Microchannels
J. Heat Transfer (April,2010)
Related Chapters
Control and Operational Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Scope of Section I, Organization, and Service Limits
Power Boilers: A Guide to the Section I of the ASME Boiler and Pressure Vessel Code, Second Edition
Effects of Network Structure on Public Opinion Development (PSAM-0116)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)