Water management is a critical component of extracting optimum performance and efficiency from polymer electrolyte membrane (PEM) fuel cells. During fuel cell operation, a balance needs to be maintained between excess water blocking the reactant pathways through the gas diffusion layer, and the requirement for membrane hydration. The ionic conductivity through the membrane depends strongly on the hydration of the membrane.

The reactant gases in a PEM fuel cell are supplied through a humidification system to maintain appropriate levels of hydration in the membrane. The removal of the anode humidifier would significantly reduce the balance of plant costs and reduce the volume required for the fuel cell in an automotive setting. However, removing the anode humidification system could have adverse effects on membrane hydration and on fuel cell performance.

In this study, the anode humidification was varied and the cell performance and the membrane resistance were monitored. Synchrotron X-ray radiography was conducted simultaneously to visualize the water distribution in the membrane, the gas diffusion layer, and the associated interfaces. It was observed that the anode humidification had a strong impact on the performance of the fuel cell, with the dry condition leading to voltage instability at a current density below 1.0 A/cm2. The membrane water content was observed to decrease with increases in operating current density.

This content is only available via PDF.
You do not currently have access to this content.