Microscale heat and fluid flow in macro geometries have been made practical in terms of cost and fabrication, by superimposing two macro geometries which are fabricated using readily-available CNC machining methods. Wavy-profile has been proposed to enhance heat transfer performance in the microchannel owing to the simplicity of geometry and feasibility to be fabricated using simple turning process. Experimental studies were conducted on single-phase, forced convective heat transfer using water as the working fluid for the Reynolds number range of 1300 to 4600, for a constant heat flux of 53.0 W/cm2. Three sinusoidal waves with different wavelength and same amplitude are studied to examine the effect of the total number of waves on the heat transfer and hydrodynamic performance within constant microchannel length. The maximum performance index, which evaluates heat transfer performance per unit pumping power, is 1.39, achieved by wavy profile with the shortest wavelength at Reynolds number of 2800. The performance index for all the enhanced microchannels peaks at the Reynolds number range of 2500 to 2800. Beyond that, the performance index is not a strong function of the wavelength. At lower Reynolds numbers, profile with the shortest wavelength achieves substantially higher performance indices, as the increment in pressure drop is accompanied by a comparable increment in heat transfer. Future work includes the introduction of correlations for the implementation of such geometries in industrial heat exchangers.

This content is only available via PDF.
You do not currently have access to this content.