This paper describes extended experiments on a pulsating heat pipe (PHP) fabricated by using a 3-D printer and a graphene-laden PLA (PolyLactic Acid) filament. Water was used as a working fluid. To maintain airtightness, the 3-D printed PHP was electroplated by copper since the graphene in the filament allows electric currents to pass through. The PHP had ten square channels. A cross section and a length of the square channel were 1.5 mm × 1.5 mm and 80 mm, respectively. Ends of each channel were connected to form a single serpentine channel. A filling ratio of the working fluid was 50%. In experiments, an evaporator section of the PHP was heated by a heater and a condenser section was cooled using a water-cooling jacket. The heater power was increased stepwise from 2.0 W to 7.0 W while the cooling water temperature and its flow rate were maintained at 4.0 °C and 0.25 LPM, respectively. Transient temperature distributions of the PHP were measured by K-type thermocouples. From the experimental results, steady-state two-phase heat transport operation of the PHP was confirmed for the heater power between 3.0 W and 6.0 W. Moreover, the present experimental results were compared with the previous ones, where ethanol was used as the working fluid. It was also confirmed that the thermal resistance of the PHP with ethanol was slightly smaller than that with water.

This content is only available via PDF.
You do not currently have access to this content.