In developing numerical code for interfacial evaporation problems, 1st Stefan problem is generally used for validation. In this paper, both 1st and 2nd Stefan problems are used for validating a numerical code that utilizes volume of fluid method and is based on ANSYS-Fluent along with user defined functions (UDFs) to account for the mass and energy transfer at the interface. The 2nd Stefan problem incorporates heat transfer in both phases and provides a more realistic representation of an evaporating interface. Emphasis is put on the vapor-liquid heat transfer, which takes into account the sensible heat transfer in the liquid phase where liquid conduction effects are important. The mass transfer model takes into account the temperature gradients in both phases at the interface. Analytical solutions for the two Stefan problems are reported and used for validation purposes. Results show that the interface displacement and temperature distributions are simulated accurately. The current approach utilizes the robust platform of ANSYS-Fluent while allowing an accurate representation of the phase change processes at the interface.

This content is only available via PDF.
You do not currently have access to this content.