To address the effects of curvature, initial conditions and disturbances, a numerical study is made on the fully-developed bifurcation structure and stability of the forced convection in tightly curved rectangular microchannels of aspect ratio 10 and curvature ratio 0.5 at Prandtl number 7.0. Eleven solution branches (seven symmetric and four asymmetric) are found with 10 bifurcation points and 27 limit points. The flows on these branches are with 2, 4, 6, 7, 8, 9 or 10-cell structures. The flow structures change along the branch because of the flow instability. The average friction factor and Nusselt Number are different on different solution branches. It is found that more than 22.33% increase in Nu can be achieved with less than 9.34% increase in fRe at Dk of 2000. As Dean number increases, finite random disturbances lead the flows from a stable steady state to another stable steady state, a periodic oscillation, an intermittent oscillation, another periodic oscillation and a chaotic oscillation. The mean friction factor and mean Nusselt Number are obtained for all physically realizable flows. A significant enhancement of heat transfer can be obtained at the expense of a slightly increase of flow friction in tightly coiled rectangular ducts.
Skip Nav Destination
ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 Fluids Engineering Division Summer Meeting
July 10–14, 2016
Washington, DC, USA
Conference Sponsors:
- Fluids Engineering Division
ISBN:
978-0-7918-5034-3
PROCEEDINGS PAPER
Nonlinear Study of Convective Heat Transfer in Tightly Curved Rectangular Microchannels
Fang Liu
Fang Liu
Shanghai University of Electric Power, Shanghai, China
Search for other works by this author on:
Fang Liu
Shanghai University of Electric Power, Shanghai, China
Paper No:
ICNMM2016-7912, V001T11A002; 5 pages
Published Online:
November 9, 2016
Citation
Liu, F. "Nonlinear Study of Convective Heat Transfer in Tightly Curved Rectangular Microchannels." Proceedings of the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 Fluids Engineering Division Summer Meeting. ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels. Washington, DC, USA. July 10–14, 2016. V001T11A002. ASME. https://doi.org/10.1115/ICNMM2016-7912
Download citation file:
10
Views
Related Proceedings Papers
Related Articles
Numerical Investigation of Flow Field and Heat Transfer in Cross-Corrugated Ducts
J. Heat Transfer (May,1999)
Rayleigh-Be´nard Convection in a Small Aspect Ratio Enclosure: Part I—Bifurcation to Oscillatory Convection
J. Heat Transfer (May,1993)
Related Chapters
Hydraulic Resistance
Heat Transfer & Hydraulic Resistance at Supercritical Pressures in Power Engineering Applications
Heat Transfer Enhancement by Using Nanofluids in Laminar Forced Convection Flows Considering Variable Properties
Proceedings of the 2010 International Conference on Mechanical, Industrial, and Manufacturing Technologies (MIMT 2010)
Mixed-Up Convection
Hot Air Rises and Heat Sinks: Everything You Know about Cooling Electronics Is Wrong