Particle-particle interaction is an important phenomenon in the analysis of particle transport in a microfluidic device. This paper presents a computational study to predict the interaction force between particle complexes in a magnetophoretic bio-separation chip. Magnetic flux gradients are simulated in OpenFOAM CFD software and imported to Matlab to obtain the particle trajectories. The interaction force is approximated using a dipole based model and implemented to track the particle motion in a microfluidic device in the presence of an applied magnetic field. The analysis of particle trajectories is performed for cases where the applied magnetic field is parallel or perpendicular to the inter-particle distance of the particle complexes by solving a system of coupled ordinary differential equations.

This content is only available via PDF.
You do not currently have access to this content.