The influences of operating conditions and physical properties of the two phases on the hydrodynamics and mass transfer in a circular liquid-liquid microchannel have been investigated. The polytetrafluoroethylene (PTFE) microchannel has an internal diameter of 0.7 mm and a T-shaped mixing junction. Sodium hydroxide solution was used as the aqueous phase. N-hexane and toluene were employed as the organic phases to investigate the effect of physical properties. Regarding the results, at constant total flow rate, raising the flow rate ratio enhanced the overall volumetric mass transfer coefficient. Using toluene as the organic solvent enhanced the overall volumetric mass transfer coefficient in average by 64.7% and 100.27% comparing to n-hexane-water at flow rate ratio of 1 and 0.5, respectively. This increment resulted in a decrement in the required mass transfer time and length in the microchannel. The length of the slugs had no considerable variation as n-hexane was replaced with toluene. Thus, the significant improvement of the overall volumetric mass transfer coefficient was because of the increment of the overall mass transfer coefficient, not the specific interfacial area.

This content is only available via PDF.
You do not currently have access to this content.