In this paper, single-phase liquid and two-phase gas-liquid pressure drop data through 180° return bends have been obtained for horizontal rectangular micro-channel and mini-channel. To investigate the size effects of the test channels, the hydraulic diameters were 0.25 mm and 3 mm respectively as the micro-channel and the mini-channel. The curvature radii of the bends were 0.500 mm and 0.875 mm for the micro-channel, while 6 mm for the mini-channel. To know liquid properties effects, distilled water, surfactant and glycerin aqueous solutions, ethanol and HFE (hydrofluoroether)-7200 were used as the test liquid, while nitrogen gas and air as the test gas. Pressure distributions upstream and downstream tangents of the bend were measured for the single-phase and the two-phase flows. From the pressure distribution data, the bend pressure loss was determined. By analyzing the present data, the bend loss coefficient for single-phase flow in both micro- and mini-channels could be correlated with Dean number. On the other side, the total bend pressure loss for two-phase flows were correlated by using an approach of Padilla et al., in which the total pressure loss is the sum of two pressure drop components, i.e., frictional pressure drop and singular pressure drop. The approach was found to be applicable to the present data for the micro- and the mini-channels if the frictional pressure drop was calculated by Lockhart-Martinelli method with Mishima & Hibiki’s correlation and Kawahara et al.’s correlation and the singular pressure drop was calculated by a newly developed empirical correlation.

This content is only available via PDF.
You do not currently have access to this content.