Flow boiling in microchannels offers many advantages such as high heat transfer coefficient, higher surface area to volume ratio, low coolant inventory, uniform temperature control and compact design. The application of these flow boiling systems has been severely limited due to early critical heat flux (CHF) and flow instability. Recently, a number of studies have focused on variable flow cross-sectional area to augment the thermal performance of microchannels. In a previous work, the open microchannel with manifold (OMM) configuration was experimentally investigated to provide high heat transfer coefficient coupled with high CHF and low pressure drop. In the current work, high speed images of plain surface using tapered manifold are obtained to gain an insight into the nucleating bubble behavior. The mechanism of bubble nucleation, growth and departure are described through high speed images. Formation of dry spots for both tapered and uniform manifold geometry is also discussed.

This content is only available via PDF.
You do not currently have access to this content.