Addressing the traditionally contradictory problem of obtaining considerable drag reduction without negatively impacting heat transfer as much is an arduous scientific challenge. In this paper, prior efforts on frictional drag reduction and the associated issues are discussed in relevant detail, and the effectiveness of Conducting-Lubricating (CO-LUB) surfaces as one of the potential options to address this challenge for single phase forced convection of liquids is numerically pursued. CO-LUB surfaces have exceptionally high wetting characteristics, and when saturated with a liquid microlayer, provide remarkable lubrication to bulk liquid flow and simultaneously facilitate heat transfer by conduction through the microlayer. In the simulations, the side walls of a high aspect ratio rectangular channel were assumed as CO-LUB surfaces and flow and heat transfer of bulk liquid flow were modeled using ANSYS FLUENT 14.5. Volume-of-Fluid (VOF) method was used to model the two phases with a free surface interface, with water as the microlayer liquid and oil as the bulk liquid, in a narrow channel of 5 mm width and 50 mm length under laminar flow, constant wall heat flux conditions. The results were compared with a regular channel of the same dimensions (without CO-LUB surfaces) and it was found that pressure drop decreased remarkably by ∼23 times for some cases but without any heat transfer attenuation (actually, improved heat transfer performance was observed) leading to highly energy-efficient convective transport.

This content is only available via PDF.
You do not currently have access to this content.