Microfluidic cooling technologies for future electronic and photonic microsystems require more efficient flow configurations to improve heat transfer without a hydrodynamic penalty. Although conventional microchannel heat sinks are effective at dissipating large heat fluxes, their large pressure drops are a limiting design factor. There is some evidence in the literature that obstacles such as pillars placed in a microchannel can enhance downstream convective heat transfer with some increase in pressure drop. In this paper, measured head-loss coefficients are presented for a set of single microchannels of nominal hydraulic diameter 391μm and length 30mm, each containing a single, centrally-located cylindrical pillar covering a range of confinement ratios, β = 0.1–0.7, over a Reynolds number range of 40–1900. The increase in head-loss due to the addition of the pillar ranged from 143% to 479%, compared to an open channel. To isolate the influence of the pillar, the head-loss contribution of the open channel was extracted from the data for each pillar configuration. The data was curve-fitted to a decaying power-law relationship. High coefficients of determination were recorded with low root mean squared errors, indicating good fits to the data. The data set was surface-fitted with a power law relationship using the Reynolds number based on the cylinder diameter. This was found to collapse the data well below a Reynolds number of 425 to an accuracy of ± 20%. Beyond this Reynolds number an inflection point was observed, indicating a change in flow regime similar to that of a cylinder in free flow. This paper gives an insight into the hydrodynamic behavior of a microchannel containing cylindrical pillars in a laminar flow regime, and provides a practical tool for determining the head-loss of a configuration that has been demonstrated to improve downstream heat transfer in microchannels.

This content is only available via PDF.
You do not currently have access to this content.