Homogeneous vapor nucleation of the electrolyte solution within a nanopore at its superheat limit was studied using the bubble nucleation model based on molecular interaction. The wall motion of the bubble that evolved from the evaporated electrolyte solution was obtained using the Keller-Miksis equation and the distribution of temperature inside the bubble was obtained by solving the continuity, momentum and energy equations for the vapor inside the bubble. Heat transfer at the interface was also considered in this study. The nucleation rate of the 3 M NaCl solution at 571 K is estimated to be approximately 0.15×1028 clusters/m3s. With this value of the nucleation rate, the complete evaporation time of the 50 nm radius of the electrolyte solution is approximately 0.60 ns. The calculated life time of the bubble that evolved from the evaporated solution, or the time duration for the growth and subsequent collapse of the bubble, is approximately 32 ns, which is close agreement with the observed result of 28 ns. The bubble reaches its maximum radius of 301 nm at 13.2 ns after the bubble evolution.

This content is only available via PDF.
You do not currently have access to this content.