Proton exchange membrane fuel cells are efficient and environmentally friendly electrochemical engines. The present work focuses on air channels that bring the oxidant air into the cell. Characterization of the oxygen concentration drop from the channel to the gas diffusion layer (GDL)-channel interface is a need in the modeling community. This concentration drop is expressed with the non-dimensional Sherwood number (Sh). At the aforementioned interface, the air can have a non-zero velocity normal to the interface: injection of air to the channel and suction of air from the channel. A water droplet in the channel can constrict the channel cross section and lead to a flow through the GDL. In this numerical study, a rectangular air channel, GDL, and a stationary droplet on the GDL-channel interface are simulated to investigate the Sh under droplet induced injection/suction conditions. The simulations are conducted with a commercially available software package, COMSOL Multiphysics.

This content is only available via PDF.
You do not currently have access to this content.