The ongoing development of faster and smaller electronic components has led to a need for new technologies to effectively dissipate waste thermal energy. The pulsating heat pipe (PHP) shows potential to meet this need, due to its high heat flux capacity, simplicity, and low cost. A 20-turn flat plate PHP was integrated into an aluminum flat plate heat sink with a simulated electronic load. The PHP heat sink used water as the working fluid and had 20 parallel channels with dimensions 2 mm × 2 mm × 119 mm. Experiments were run under various operating conditions, and thermal resistance of the PHP was calculated. The performance enhancement provided by the PHP was assessed by comparing the thermal resistance of the heat sink with no working fluid to that of it charged with water. Uncharged, the PHP was found to have a resistance of 1.97 K/W. Charged to a fill ratio of approximately 75% and oriented vertically, the PHP achieved a resistance of .49 K/W and .53 K/W when the condenser temperature was set to 20°C and 30°C, respectively. When the PHP was tilted to 45° above horizontal the PHP had a resistance of .76 K/W and .59 K/W when the condenser was set 20°C and 30°C, respectively. The PHP greatly improves the heat transfer properties of the heat sink compared to the aluminum plate alone. Additional considerations regarding flat plate PHP design are also presented.
Skip Nav Destination
ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting
August 3–7, 2014
Chicago, Illinois, USA
Conference Sponsors:
- Fluids Engineering Division
ISBN:
978-0-7918-4627-8
PROCEEDINGS PAPER
Integration of a Pulsating Heat Pipe in a Flat Plate Heat Sink Available to Purchase
Mitchell P. Hoesing,
Mitchell P. Hoesing
South Dakota State University, Brookings, SD
Search for other works by this author on:
Gregory J. Michna
Gregory J. Michna
South Dakota State University, Brookings, SD
Search for other works by this author on:
Mitchell P. Hoesing
South Dakota State University, Brookings, SD
Gregory J. Michna
South Dakota State University, Brookings, SD
Paper No:
ICNMM2014-21233, V001T05A001; 8 pages
Published Online:
December 17, 2014
Citation
Hoesing, MP, & Michna, GJ. "Integration of a Pulsating Heat Pipe in a Flat Plate Heat Sink." Proceedings of the ASME 2014 12th International Conference on Nanochannels, Microchannels, and Minichannels collocated with the ASME 2014 4th Joint US-European Fluids Engineering Division Summer Meeting. ASME 2014 12th International Conference on Nanochannels, Microchannels and Minichannels. Chicago, Illinois, USA. August 3–7, 2014. V001T05A001. ASME. https://doi.org/10.1115/ICNMM2014-21233
Download citation file:
16
Views
Related Proceedings Papers
Related Articles
Experimental Investigation of a Flat-Plate Oscillating Heat Pipe With Groove-Enhanced Minichannels
J. Thermal Sci. Eng. Appl (December,2020)
An Investigation of Flat-Plate Oscillating Heat Pipes
J. Electron. Packag (December,2010)
Investigation of a Heat Pipe Array for Convective Cooling
J. Electron. Packag (September,1995)
Related Chapters
Outlook
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Scope of Section I, Organization, and Service Limits
Power Boilers: A Guide to the Section I of the ASME Boiler and Pressure Vessel Code, Second Edition