The Japan Atomic Energy Agency (JAEA) has been conducting research and development on the thermo-chemical iodine–sulfur (IS) process, which is one of the most attractive water-splitting hydrogen production methods using the nuclear heat of a high-temperature gas-cooled reactor (HTGR). In researching this IS process, a silicon carbide (SiC) heat exchanger with good corrosion resistance was used in a corrosive situation in boiling sulfuric acid. With the aim of enhancing heat transfer in the SiC heat exchanger, a nanostructured surface made of carbon nanotubes (CNTs) was produced on a SiC substrate by surface decomposition. Two types of SiC, one produced by pressureless sintering (PLS-SiC) and one by chemical vapor deposition (CVD-SiC), were used as substrates. CNTs formed by the surface decomposition of SiC can vary depending on the crystal structure of the substrates. Additionally, in order to investigate surface wettability, nanostructured surfaces on the CVD-SiC with hydrophilicity and hydrophobicity were produced. The effects of heat transfer enhancement by the nanostructured surfaces were evaluated by a convective heat transfer test using de-ionized water. The nanostructured surface on the CVD-SiC with hydrophilicity was the only surface that showed any heat transfer enhancement. However, this enhancement was much smaller than those previously reported. The experiment showed that the small size of the nanopores influenced the heat transfer enhancement and that the wettability of the nanostructured surface was related to heat transfer enhancement.

This content is only available via PDF.
You do not currently have access to this content.