The problem of laminar flow and heat transfer of water-based nanofluids inside a 3D-microchannel heat sink was numerically investigated, considering temperature-dependent fluids properties. Results, obtained for the 250–2000 Reynolds number range, show that an important enhancement of surface convective heat transfer coefficient can be achieved by increasing the particle volume fraction. For given Reynolds number and particle fraction, a highest heat transfer enhancement is obtained using CuO-water nanofluid. However, the use of nanofluids considerably increases the wall friction and consequently the pumping power. The ‘heat transferred to fluid/pumping power’ ratio was calculated for nanofluids. For given Reynolds number and particle volume fraction, such a ratio was found lowest for CuO-water nanofluid, while alumina-water nanofluids provide similar results.

This content is only available via PDF.
You do not currently have access to this content.