A flow control method is presented that employ liquid and gas jets to enhance heat and mass transfer in micro domains. By introducing pressure disturbances, mixing can be significantly enhanced through the promotion of early transition to a turbulent flow. Since heat transfer mechanisms are closely linked to flow characteristics, the heat transfer coefficient can be significantly enhanced with rigorous mixing. The flow field of water around a low aspect ratio micro circular pillar of diameter 150 μm entrenched inside a 225 μm high by 1500 μm wide microchannel with active flow control was studied and its effect on mixing is discussed. A steady control jet emanating from a 25 μm slit on the pillar was introduced to induce favorable disturbances to the flow in order to modify the flow field, promote turbulence, and increase large-scale mixing. Micro particle image velocimetry (μPIV) was employed to quantify the flow field, the spanwise vorticity, and the turbulent kinetic energy (TKE) in the microchannel. Flow regimes (i.e., steady, transition from quasi-steady to unsteady, and unsteady flow) were elucidated. The turbulent kinetic energy was shown to significantly increase with the controlled jet, and therefore, significantly enhance mixing at the micro scale.

This content is only available via PDF.
You do not currently have access to this content.