Achieving the fast mixing requirements posed by the chemical, biological, and life science community for confined microchannel flows remains an engineering challenge. The viscous and surface tension forces that dominate conventional micro-flows undermine fast, efficient mixing. By increasing the collisional velocity of reagent droplets, inertia can be exploited to increase mixing rates. This paper experimentally investigates inertial droplet mixing in micro flows. A high speed, gaseous flow is used to detach, transport, and collide droplets of nanoliter-size volumes in standard T and Y-junction microchannel geometries. Mixing rates are quantified using differential fluorescent optical diagnostics. Measured droplet mixing times are compared to the characteristic time scales for mass and viscous diffusion and bulk convection. Results show that mixing times are decreased as the droplet inertia is increased, indicating the potential benefit of inertia-driven mixing.

This content is only available via PDF.
You do not currently have access to this content.