In this paper, the characteristics of bubble dynamic behaviors and the impacts on the triple-phase contact line are studied by a visualization investigation. A high-speed digital camera with maximum speed of 30000 frames per second is adopted to record the period of bubble growth and the geometry of the splashed liquid drops. The information of the bubble dynamic behavior and the liquid drops volume can be analyzed through the software MATLAB. The statistics of the splashed liquid drops is adopted under different heat flux conditions. The experimental results show that the bubble dynamic behaviors lead to the fluctuation of the triple-phase contact line and the splashed liquid drops make the heat transfer capability of the film in microgrooves less than its theoretical maximum value. The investigation indicates that the bubble behaviors can influence the performance of heat transfer through the fluctuations of the triple-phase contact line in the thin liquid film in microgrooves. And the splashed liquid drops appearing in boiling process can also affect the heat transfer of the liquid film in open capillary microgrooves.

This content is only available via PDF.
You do not currently have access to this content.