A numerical procedure has successfully predicted accurate values of thermodynamic properties in seven cubic equations of state (EOS) in predicting thermodynamic properties of nine ozone-safe refrigerants both in super and sub-critical regions. Refrigerants include R22, R32, R123, R124, R125, R134a, R141b, R143, and R152a and equations of state, considered here, are Ihm-Song-Mason (ISM), Peng-Robinson (PR) [2], Redlich-Kwong (RK), Soave-Redlikh-Kwong (SRK), Modified Redlickh-Kwong (MRK), Nasrifar-Moshfeghian (NM), and TCC were shown in this paper. In general, the results are in favor of the preference of TCC and PR EOS over other remaining EOS’s in predicting gas densities of all aforementioned refrigerants in both super and sub critical regions. Typically, PR and SRK are in good agreement with those obtained from recent correlations and speed of sound measurements. Therefore, these two EOS stand over other EOS both in sub and super critical regions. All EOS follow two-parameter principle of corresponding states at T/Tc higher than 8 and lower than 1 except NM EOS. In the temperature range 1<T/Tc<8, PR and SRK still follow above mentioned principle. The same trend has been observed for other refrigerants.

This content is only available via PDF.
You do not currently have access to this content.