The reduction of effective transfer length on microscale eliminates the external diffusion limitation on reaction rate and makes it possible to realize the non-equilibrium chemical reactions. The peculiarities of methane and carbon monoxide steam reforming in a minichannel reactor with activation of reactions on thin film catalyst prepared by nanotechnology are considered in this paper. Consistent accomplishment of these reactions can increase the hydrogen yield and reduce the concentration of carbon monoxide in the product. Steam reforming of methane was studied on Rh/Al2O3 nanocatalyst deposited on the inner wall of the annular minichannel. Steam reforming of carbon monoxide was studied at Pt/CeO2/Al2O3 nanocatalyst deposited on the walls of the minichannel plate. The procedure of catalyst preparation which makes the nanoparticles of two nanometers in size is developed. The catalyst has uniform fraction of nanoparticles and optimal oxygen mobility in the lattice of carrier. During tests the data on the composition of the reacting gas mixture in temperature range from 200 C to 940 C were obtained including data on conversion in controlled temperature field when hydrogen content in the product reaches 68% and carbon monoxide content reduces to 1%. Methane steam reforming and water gas shift reaction in the minichannel were modeled numerically. The detailed information on the temperature and species concentration fields has been obtained, and kinetics of multistage reactions was defined when the external heat is supplied to proceed the steam reforming. The temperature regimes of high conversion of methane and carbon monoxide were defined and discussed in connection with the experimental data.

This content is only available via PDF.
You do not currently have access to this content.