This paper reports an improved technique to enhance microfluidic temperature gradient focusing (TGF) of sample solutes using Joule heating effects induced by a combined AC and DC electric field. By introducing the AC field component, additional Joule heating effects are obtained to generate temperature gradient for concentrating sample solutes, while the electroosmotic flow is suppressed under the high frequency AC electric field. Therefore, the required DC voltages for achieving certain sample concentration by Joule heating induced TGF technique are remarkably reduced. Moreover, the lower DC voltages lead to smaller electroosmotic flow (EOF), thereby reducing the backpressure effects due to the finite reservoir size. Concentration enhancements of sample solutes are improved by using a combined AC and DC electric field.
Skip Nav Destination
ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels
June 19–22, 2011
Edmonton, Alberta, Canada
Conference Sponsors:
- Heat Transfer Division
ISBN:
978-0-7918-4463-2
PROCEEDINGS PAPER
Towards High Concentration Enhancement of Microfluidic Temperature Gradient Focusing of Sample Solutes
Zhengwei Ge,
Zhengwei Ge
Nanyang Technological University, Singapore
Search for other works by this author on:
Chun Yang
Chun Yang
Nanyang Technological University, Singapore
Search for other works by this author on:
Zhengwei Ge
Nanyang Technological University, Singapore
Chun Yang
Nanyang Technological University, Singapore
Paper No:
ICNMM2011-58273, pp. 229-237; 9 pages
Published Online:
May 11, 2012
Citation
Ge, Z, & Yang, C. "Towards High Concentration Enhancement of Microfluidic Temperature Gradient Focusing of Sample Solutes." Proceedings of the ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels. ASME 2011 9th International Conference on Nanochannels, Microchannels, and Minichannels, Volume 1. Edmonton, Alberta, Canada. June 19–22, 2011. pp. 229-237. ASME. https://doi.org/10.1115/ICNMM2011-58273
Download citation file:
7
Views
Related Proceedings Papers
Related Articles
Nonlinear Temperature Gradient Focusing of Deoxyribose Nucleic Acid in a Microfluidic Channel With Patterned Surface Charges: A Numerical Study
J. Thermal Sci. Eng. Appl (November,2022)
Microfluidic Concentration Enhancement of Bio-Analyte by Temperature Gradient Focusing via Joule Heating by DC Plus AC Field: A Numerical Approach
J. Thermal Sci. Eng. Appl (December,2021)
Comparison of Experiments and Simulation of Joule Heating in ac Electrokinetic Chips
J. Fluids Eng (February,2010)
Related Chapters
Simultaneous Thermal Conductivity and Specific Heat Measurements of Thin Samples by Transient Joule Self-Heating
Inaugural US-EU-China Thermophysics Conference-Renewable Energy 2009 (UECTC 2009 Proceedings)
Errors Caused by Using Joules to Time Laboratory and Outdoor Exposure Tests
Accelerated and Outdoor Durability Testing of Organic Materials
Natural Gas Transmission
Pipeline Design & Construction: A Practical Approach, Third Edition