The free vibration and instability of fluid-conveying multi-wall carbon nanotubes (MWCNTs) are studied based on an Euler-Bernoulli beam model. A theory based on the transfer matrix method (TMM) is presented. The validity of the theory was confirmed for MWCNTs with different boundary conditions. The effects of the fluid flow velocity were studied on MWCNTs with simply-supported and clamped boundary conditions. Furthermore, the effects of the CNTs’ thickness, radius and length were investigated on resonance frequencies. The CNT was found to posses certain frequency behaviors at different geometries. The effect of the damping corriolis term was studied in the equation of motion. Finally, a useful simplification is introduced in the equation of motion.

This content is only available via PDF.
You do not currently have access to this content.