Film deposition experiments are performed in circular glass capillaries of 500 μm diameter. Two surface wettabilities are considered, contact angle of 30° for water on glass and of 105° when a hydrophobic coating is applied. It was observed that the liquid film deposited as the meniscus translates with a velocity U presents a ridge that also moves in the direction of the flow. The ridge is bounded by a contact line moving at a velocity UCL as well as a front of velocity UF, and it translates over the deposited stagnant film. The behavior of the ridge presents striking dissimilarities when the wettability is changed. Both UCL and UF are approximately twice as large for the non-wetting case at the same capillary number Ca. The Taylor bubbles forming due to the growth of the ridge are also differentiated by wettability, being much shorter in the non-wetting case. The dynamics of the contact line is studied experimentally and a criterion is proposed to explain the occurrence of a shock at the advancing front of the ridge. The hydraulic jump cannot be explained by the Froude condition of shock formation in shallow waters, or by an inertial dewetting of the deposited film. For a dynamic contact angle of θd = 6° and according to the proposed criterion, a hydraulic jump forms at the front of the ridge when a critical velocity is reached.
Skip Nav Destination
ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels collocated with 3rd Joint US-European Fluids Engineering Summer Meeting
August 1–5, 2010
Montreal, Quebec, Canada
Conference Sponsors:
- Fluids Engineering Division
ISBN:
978-0-7918-5450-1
PROCEEDINGS PAPER
Implications of Contact Line Dynamics on Taylor Bubble Flow Morphology
Alexandru Herescu,
Alexandru Herescu
Michigan Technological University, Houghton, MI
Search for other works by this author on:
Jeffrey S. Allen
Jeffrey S. Allen
Michigan Technological University, Houghton, MI
Search for other works by this author on:
Alexandru Herescu
Michigan Technological University, Houghton, MI
Jeffrey S. Allen
Michigan Technological University, Houghton, MI
Paper No:
FEDSM-ICNMM2010-30911, pp. 813-820; 8 pages
Published Online:
March 1, 2011
Citation
Herescu, A, & Allen, JS. "Implications of Contact Line Dynamics on Taylor Bubble Flow Morphology." Proceedings of the ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels collocated with 3rd Joint US-European Fluids Engineering Summer Meeting. ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels: Parts A and B. Montreal, Quebec, Canada. August 1–5, 2010. pp. 813-820. ASME. https://doi.org/10.1115/FEDSM-ICNMM2010-30911
Download citation file:
10
Views
Related Proceedings Papers
Related Articles
Effect of Hydraulic Jump on Hydrodynamics and Heat Transfer in a Thin Liquid Film Flowing Over a Rotating Disk Analyzed by Integral Method
J. Heat Transfer (May,2007)
Non-Newtonian Drops Spreading on a Flat Surface
J. Fluids Eng (October,2010)
Effect of Wettability on Pool Boiling Incipience in Saturated Water
J. Heat Transfer (August,2016)
Related Chapters
Chitosan-Based Drug Delivery Systems
Chitosan and Its Derivatives as Promising Drug Delivery Carriers
Surface Analysis and Tools
Tribology of Mechanical Systems: A Guide to Present and Future Technologies
Gas-Fluidized Beds
Two-Phase Heat Transfer