Magnetic-nanoparticles cancer hyperthermia, a side effects-free, potential cancer therapy employing magnetic nanoparticle remotely heated by alternating magnetic field (AMF), is receiving considerable attention from researchers and physicians [1–3]. Specific absorption rate (SAR), which is used to quantify nanoparticles’ heat generation under the applied AMF, is defined as the thermal power per unit mass dissipated by the magnetic material [3]. SAR depends on field parameters (magnetic field strength and frequency) and material system (size and magnetic properties of nanoparticles). Accurate measurement of SAR is a critical step in enabling comparison with theoretical predictions for understanding other parameters that may affect the heat generation rate such as nanoparticle functionalization, clustering and immobilization in biological medium [4]. A main drawback is the fact that independent measurements on similar samples often provide significantly different SAR values. For example, the reported SAR of magnetite-based aqueous solution Endorem commercially available from Guerbet greatly differs among Ref. [3], [5] and [6], even when factors such as field intensity, H, and frequency, f, are taken into account.

This content is only available via PDF.
You do not currently have access to this content.