A three-dimensional model is developed to simulate the behavior of a single-channel three-way catalytic converter. The flow regime is assumed to be steady and laminar, and the channel walls are considered as isothermal. A multi-step, global heterogeneous reaction mechanism with 16 reactions and 11 species is used in this investigation to enhance the accuracy of the results. The chemical reactions are assumed to occur only on the reactor walls. The developed model is validated against available experimental data for stoichiometric operating conditions. The effect of the feed temperature on the conversion efficiency of the main pollutant components is studied. The light-off temperature for the stoichiometric A/F is found to be about 530 K for CO, NO and UHC, and 425 K for H2 conversion. The model is also applied to predict the effect of reactor length and inlet mixture space velocity on the conversion efficiency at two different temperatures. By using the same kinetics a well-stirred, unsteady model is also developed to identify the sensitivity of the multi-step kinetic mechanism to the mixture composition. The effect of mole fraction variation of each species on the conversion of other mixture components is investigated.

This content is only available via PDF.
You do not currently have access to this content.