Hydrogen production through autothermal reforming (ATR) of hydrocarbons, such as methane, is one option of interest for mobile applications of hydrogen fuel cells. In the present study, a numerical investigation of catalytic autothermal reforming of methane in a surface microreactor is presented. A three-dimensional ATR reactor model is developed to simulate the flow and surface reactions in a microchannel of rectangular cross section with 340-μm sides, and total length of 8.5 mm. A four-reaction mechanism is implemented to simulate the surface reactions on a Ni/Al2O3 catalyst. The governing equations in the model include conservations of mass, momentum, energy and chemical species. A CFD code based on the finite-volume method has been developed in-house to solve the governing equations. Validation of the results against available data confirms the accuracy of the numerical approach. The simulation results reveal the dependency of hydrogen yield on space velocity (SV), air/fuel molar ratio (A/F), water/fuel molar ratio (W/F), and the gas feed temperature.

This content is only available via PDF.
You do not currently have access to this content.