This paper investigates experimentally flow boiling characteristics in a cross-linked microchannel heat sink at low mass fluxes and high heat fluxes. The heat sink consists of 45 straight microchannels with a hydraulic diameter of 248 μm and heated length of 16 mm. Three cross-links, of width 500 μm, are introduced in the present microchannel heat sink to achieve better temperature uniformity and to avoid flow maldistribution. Flow visualization, flow instability, and two-phase pressure drop measurements are conducted using the dielectric coolant FC-72 for the range of heat flux from 20.1 to 104.2 kW/m2, mass flux from 109 to 290 kg/m2.s, and exit quality from 0.02 to 0.65. Flow visualization studies indicate that the observed flow regime is primarily slug. Instability results show that the periods and amplitudes of inlet pressure and outlet saturation temperature oscillations decrease with increasing mass flux. The two-phase pressure drop strongly increases with the exit quality and the two-phase frictional pressure drop increases by a factor of 1.6–2, at xe, o < 0.3, as compared with that in the straight microchannel heat sink.

This content is only available via PDF.
You do not currently have access to this content.