The Cassie-Baxter state is a phenomenon in which a liquid rests on top of a textured surface with a gas layer trapped underneath the liquid layer. This gas layer introduces an effective shear free boundary that induces slip at the liquid-gas interface, allowing for friction reduction in liquid channel flows. Multiple studies have shown that different surface configurations result in different friction reduction characteristics, and most work is aimed at controlling the roughness factor and its shape in order to achieve an increased slip flow. This paper investigates the effects that different texturing geometries have on the stability of the Cassie state under pressurized microchannel flow conditions. To test the stability effects associated with the pressurized microchannel flow conditions, microfluidic channels with microstructures on the side walls were designed and fabricated. The microstructures were designed to induce the Cassie state with a liquid-air interface forming between the texturing trenches. The air trapped within the microstructure is treated as an ideal gas, with the compressibility induced pressure rise acting as a restrictive force against the Wenzel wetting transition. The model was validated against experimental flow data obtained using microchannel samples with microtextured boundaries. The microchannels were fabricated in PDMS (poly-dimethylsiloxane) using soft lithography and were baked on a hot plate to ensure the hydrophobicity of the microtexture. Pressure versus flow rate data was obtained using a constant gravitational pressure head setup and a flow meter. The liquid-gas interface layer in the microchannel was visualized using bright field microscopy that allowed measurement of the liquid penetration depth into the microtexturing throughout the microhannel. The experimental results indicate that air trapped in the pockets created by micro-cavity structures prevented the liquid layer from completely filling the void. As expected, the pressure drop in the micro-cavity textured channel showed a considerable decrease compared to that in the flat surfaced channel. These results also suggest that micro-cavities can maintain the Cassie state of a liquid meniscus, resting on top of the surface, in larger pressure ranges than open spaced micro-pillars arrays.
Skip Nav Destination
ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels collocated with 3rd Joint US-European Fluids Engineering Summer Meeting
August 1–5, 2010
Montreal, Quebec, Canada
Conference Sponsors:
- Fluids Engineering Division
ISBN:
978-0-7918-5450-1
PROCEEDINGS PAPER
Stability Analysis of Cassie-Baxter State Under Pressure Driven Flow Available to Purchase
Tae Jin Kim,
Tae Jin Kim
The University of Texas at Austin, Austin, TX
Search for other works by this author on:
Carlos H. Hidrovo
Carlos H. Hidrovo
The University of Texas at Austin, Austin, TX
Search for other works by this author on:
Tae Jin Kim
The University of Texas at Austin, Austin, TX
Carlos H. Hidrovo
The University of Texas at Austin, Austin, TX
Paper No:
FEDSM-ICNMM2010-30406, pp. 1657-1662; 6 pages
Published Online:
March 1, 2011
Citation
Kim, TJ, & Hidrovo, CH. "Stability Analysis of Cassie-Baxter State Under Pressure Driven Flow." Proceedings of the ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels collocated with 3rd Joint US-European Fluids Engineering Summer Meeting. ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels: Parts A and B. Montreal, Quebec, Canada. August 1–5, 2010. pp. 1657-1662. ASME. https://doi.org/10.1115/FEDSM-ICNMM2010-30406
Download citation file:
17
Views
Related Proceedings Papers
Related Articles
Incompressible Criterion and Pressure Drop for Gaseous Slip Flow in Circular and Noncircular Microchannels
J. Fluids Eng (July,2011)
Effects of Axial
Corrugated Roughness on Low Reynolds Number Slip Flow and Continuum Flow in
Microtubes
J. Heat Transfer (April,2010)
Dynamic Spreading of a Droplet Impinging on Micro-Textured Surfaces
J. Heat Transfer (August,2011)
Related Chapters
Surface Analysis and Tools
Tribology of Mechanical Systems: A Guide to Present and Future Technologies
Study on Weld-Line Movement of TWBs with Different Thickness in Hydro-Forming Deep Drawing of Square Cup
International Conference on Mechanical Engineering and Technology (ICMET-London 2011)
Experimental Estimation for Pressure Fluctuation on Ship Stern Induced by Cavitating Propeller Using Cavity Shape Measurements
Proceedings of the 10th International Symposium on Cavitation (CAV2018)