Pool boiling is of interest in high heat flux applications because of its potential for removing large amount of heat resulting from the latent heat of evaporation and little pressure drop penalty for circulating coolant through the system. However, the heat transfer performance of pool boiling systems is not adequate to match the cooling ability provided by enhanced microchannels operating under single-phase conditions. The objective of this work is to evaluate the pool boiling performance of structured surface features etched on a silicon chip. The performance is normalized with respect to a plain chip. This investigation also focuses on the bubble dynamics on plain and structured microchannel surfaces under various heat fluxes in an effort to understand the underlying heat transfer mechanism. This work is expected to lead to improved enhancement features for extending the pool boiling option to meet the high heat flux removal demands in electronic cooling applications.

This content is only available via PDF.
You do not currently have access to this content.