Two-phase microfluidic heat exchangers have the potential to provide high-heat flux cooling with lower thermal resistance and lower pumping power than single-phase heat exchangers. However, the process of phase change in two-phase heat exchangers can cause flow instabilities that lead to microchannel dryout and device failure [1–3]. Modeling these flow instabilities remains challenging because the key physics are highly coupled and occur over disparate time and length scales. This work introduces a new approach to capture transient thermal and fluidic transport with a reduced-order model consisting of fluidic, thermal, and phase-change submodels. The present study presents a reduced-order, transient, multichannel fluidic circuit submodel for integration into this proposed modeling approach. The fluidic submodel is applicable in flow regimes in which a thin liquid film exists around the bubble. Flow response to boiling is modeled considering bubble overpressure. An adaptive time step approach is used to treat the rapid flow response at short time scales after initial bubble vaporization. Using a seeded bubble technique for testing two-phase flow response, the model predicts a stability threshold at 0.015 W of localized superheating for two 100-micron square channels in parallel with a pump flow rate of 0.15 ml/min. Once integrated with the proposed reduced-order thermal and phase change models, this fluidic circuit model will yield criteria for stable two-phase heat exchanger operation considering factors such as pumping pressure, channel geometry, and applied heat flux that can be compared to experimental observations.
Skip Nav Destination
ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels collocated with 3rd Joint US-European Fluids Engineering Summer Meeting
August 1–5, 2010
Montreal, Quebec, Canada
Conference Sponsors:
- Fluids Engineering Division
ISBN:
978-0-7918-5450-1
PROCEEDINGS PAPER
Reduced-Order Fluidic Model for Flow Instabilities in Two-Phase Microfluidic Heat Exchangers Available to Purchase
Josef L. Miler,
Josef L. Miler
Stanford University, Stanford, CA
Search for other works by this author on:
Gamal Refai-Ahmed,
Gamal Refai-Ahmed
AMD, Inc., Markham, ON, Canada
Search for other works by this author on:
Maxat N. Touzelbaev,
Maxat N. Touzelbaev
AMD, Inc., Sunnyvale, CA
Search for other works by this author on:
Milnes P. David,
Milnes P. David
Stanford University, Stanford, CA
Search for other works by this author on:
Julie E. Steinbrenner,
Julie E. Steinbrenner
Stanford University, Stanford, CA
Search for other works by this author on:
Kenneth E. Goodson
Kenneth E. Goodson
Stanford University, Stanford, CA
Search for other works by this author on:
Josef L. Miler
Stanford University, Stanford, CA
Gamal Refai-Ahmed
AMD, Inc., Markham, ON, Canada
Maxat N. Touzelbaev
AMD, Inc., Sunnyvale, CA
Milnes P. David
Stanford University, Stanford, CA
Julie E. Steinbrenner
Stanford University, Stanford, CA
Kenneth E. Goodson
Stanford University, Stanford, CA
Paper No:
FEDSM-ICNMM2010-30878, pp. 155-161; 7 pages
Published Online:
March 1, 2011
Citation
Miler, JL, Refai-Ahmed, G, Touzelbaev, MN, David, MP, Steinbrenner, JE, & Goodson, KE. "Reduced-Order Fluidic Model for Flow Instabilities in Two-Phase Microfluidic Heat Exchangers." Proceedings of the ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels collocated with 3rd Joint US-European Fluids Engineering Summer Meeting. ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels: Parts A and B. Montreal, Quebec, Canada. August 1–5, 2010. pp. 155-161. ASME. https://doi.org/10.1115/FEDSM-ICNMM2010-30878
Download citation file:
19
Views
Related Proceedings Papers
Related Articles
Impact of Channel Geometry on Two-Phase Flow Heat Transfer Characteristics of Refrigerants in Microchannel Heat Exchangers
J. Heat Transfer (May,1998)
Integrated Microchannel Cooling for Three-Dimensional Electronic Circuit Architectures
J. Heat Transfer (January,2005)
Significant Questions in Thin Liquid Film Heat Transfer
J. Heat Transfer (February,1994)
Related Chapters
Concluding remarks
Mechanical Blood Trauma in Circulatory-Assist Devices
Comparison of the Availability of Trip Systems for Reactors with Exothermal Reactions (PSAM-0361)
Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)
Thermal Design Guide of Liquid Cooled Systems
Thermal Design of Liquid Cooled Microelectronic Equipment