A typical microfluidic fuel cell is comprised of a Y- or T-shaped microchannel. The fuel and the oxidant streams are introduced from the two different inlets. The anodic and cathodic flows meet each other at the beginning of the main channel and start to travel together along the channel. Due to the fact that the viscous forces dominate the inertia forces in microchannels, the oxidant and the fuel streams establish a side-by-side co-laminar flow which makes the anolyte and catholyte flow together without turbulent mixing. Laminar flow in microfluidic fuel cells plays the role of the membrane in proton exchange membrane (PEM) fuel cells by maintaining the separation of the fuel and oxidant. This eliminates the need for the membrane and overcomes the membrane-related issues such as the ohmic overpotential and water management which are relevant to PEM fuel cells. In addition to the above advantage, the high surface-to-volume ratio of these micron-scale devices contributes to their high power density. This advantage is due to the fact that the electrochemical reactions in fuel cells are surface-based. The electrodes on which the electrochemical reactions are occurring are installed appropriately on the walls of the channel in a way that reacting flows are restricted to the proper electrodes. Since the flow is laminar the performance of the microfluidic fuel cell significantly depends on the device geometry. In this paper, different channel geometries and different electrode configurations are modeled and their performances are compared through the polarization curves. It has been found that the high aspect ratio provides the largest power density. In this work, the performance of the flow-through porous electrode was also modeled and compared against the conventional non-porous electrode microfluidic fuel cells. The flow-through porous electrode design is based on cross-flow of aqueous vanadium redox species through the electrodes into an exit channel, where the waste solutions meet and establish a co-laminar flow. This co-laminar flow of reacted species facilitates ionic charge transfer in a membraneless configuration. It has been found that the flow-through porous architecture provides an increased active surface area which contributes to a higher power density as opposed to the fuel cells with non-porous electrodes.
Skip Nav Destination
ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels collocated with 3rd Joint US-European Fluids Engineering Summer Meeting
August 1–5, 2010
Montreal, Quebec, Canada
Conference Sponsors:
- Fluids Engineering Division
ISBN:
978-0-7918-5450-1
PROCEEDINGS PAPER
Numerical Analysis of the Effect of Different Channel Geometries and Electrode Materials on the Performance of Microfluidic Fuel Cells
Ali Ebrahimi Khabbazi,
Ali Ebrahimi Khabbazi
University of British Columbia, Kelowna, BC, Canada
Search for other works by this author on:
Andrew Richards,
Andrew Richards
University of British Columbia, Kelowna, BC, Canada
Search for other works by this author on:
Mina Hoorfar
Mina Hoorfar
University of British Columbia, Kelowna, BC, Canada
Search for other works by this author on:
Ali Ebrahimi Khabbazi
University of British Columbia, Kelowna, BC, Canada
Andrew Richards
University of British Columbia, Kelowna, BC, Canada
Mina Hoorfar
University of British Columbia, Kelowna, BC, Canada
Paper No:
FEDSM-ICNMM2010-30772, pp. 1113-1120; 8 pages
Published Online:
March 1, 2011
Citation
Khabbazi, AE, Richards, A, & Hoorfar, M. "Numerical Analysis of the Effect of Different Channel Geometries and Electrode Materials on the Performance of Microfluidic Fuel Cells." Proceedings of the ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels collocated with 3rd Joint US-European Fluids Engineering Summer Meeting. ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels: Parts A and B. Montreal, Quebec, Canada. August 1–5, 2010. pp. 1113-1120. ASME. https://doi.org/10.1115/FEDSM-ICNMM2010-30772
Download citation file:
11
Views
Related Proceedings Papers
Related Articles
Electrical Performance of PEM Fuel Cells With Different Gas Diffusion Layers
J. Fuel Cell Sci. Technol (August,2011)
A Feasibility Study of Ribbon Architecture for PEM Fuel Cells
J. Fuel Cell Sci. Technol (October,2010)
Multi-Resolution PEM Fuel Cell Model Validation and Accuracy Analysis
J. Fuel Cell Sci. Technol (February,2006)
Related Chapters
The Study on Linear Component Technique in Identifying the Polarization of Electromagnetic Waves
International Conference on Computer and Electrical Engineering 4th (ICCEE 2011)
Effects of Metallic Plate and Objects on Performance of Inverted F Antenna for ISM Band Application
International Conference on Computer and Automation Engineering, 4th (ICCAE 2012)
Joint Polarization Information for Fast Multi-Target Localization in Bistatic MIMO Radar System
International Symposium on Information Engineering and Electronic Commerce, 3rd (IEEC 2011)