A thermal rectifier has such nature that its thermal conductance or thermal conductivity has different values with reversed heat flux direction. This work investigates the rectification of the cross-plane thermal conductivity and interfacial thermal resistance of nanoscale bi-layered films using the nonequilibrium molecular dynamics (NEMD) method. The effects of the thickness of the single layer with the total thickness constant, the ratio of the atomic mass and temperature difference in the two ends on the thermal rectification are all considered. The results of the simulations show that the thermal conductivity and the interfacial thermal resistance are different for the heat flux with opposite directions. For the composite film with two layers of the same thicknesses, the thermal conductivity is larger when the heat flux direction is from the light layer to the heavy one. The difference becomes larger when the ratio of the atomic mass in the two layers increases. Increasing the heat flux makes the rectification of thermal conductivity larger, which means that the rectification is dependent on the temperature. For the composite film with fixed total thickness, the rectification becomes smaller when the thickness of the light layer increases. When the light layer is thick enough, the rectification is found reversed, which means that the thermal conductivity is larger with the heat flux direction from the heavy layer to the light one. The phonon density of states is also calculated to explain the phenomenon, and it is found that the overlap of the phonon density of states for the two layers is almost same even if the rectification of the thermal conductivity is reversed.

This content is only available via PDF.
You do not currently have access to this content.