This work presents a numerical investigation on mixing and flow structures in microchannels with different geometries: zig-zag; square-wave; and curved. To conduct the investigation, geometric parameters, such as the area of the cross-section of channel, height of the channel, axial length of the channel, and number of pitches, are kept constant for all three cases. Analyses of mixing and flow fields have been carried out for a wide range 0.267 to 267 of the Reynolds number. Mixing in the channels has been analyzed by using Navier-Stokes equations with two working fluids, water and ethanol. The results show that the square-wave microchannel yields the best mixing performance, and the curved and the zig-zag microchannels show nearly the same performance for most Reynolds numbers. For all three cases, the pressure drop has been calculated for channels with equal streamwise-lengths. The curved channel exhibits the smallest pressure drop among the microchannels, while the pressure drops in the square-wave and zigzag channels are approximately the same.

This content is only available via PDF.
You do not currently have access to this content.