Convective heat transfer in micro and mini channels has been recommended as an effective heat removal method for various electronic packages and systems. Experimental and theoretical investigations on the thermal performance of micro and mini channels have gained immense attention and hence, heat transfer studies in mini channels are of great importance. Some of the experimental results found in the literature on heat transfer in small-dimension channels are of contradicting nature even though some generally agreeing results are also found. One of the probable reasons for such deviations is the intrusive nature of the measurement techniques used. The traditional method of temperature measurement in channels uses the thermocouple probe, and for obtaining temperature distribution across the channel either a number of probes or a moving probe technique is required, both of which disturb the flow field and cause measurement errors. Hence a non intrusive measurement technique, such as an optical method is preferable for temperature measurement in small channels. In the present work, convective heat transfer studies have been performed on water flowing through a mini channel of hydraulic diameter 4 mm, using the non-intrusive technique of laser interferometry, coupled with digital image processing. The channel is fabricated using high quality optical glass and aluminum blocks. Mach Zehnder Interferometry is used for obtaining the temperature distribution in the channel. The experimental arrangement consists of two identical channels, one placed in the test section and the other in the reference section of the interferometric set up. As the test section is heated, a density variation is produced in the medium, which causes a refractive index variation, deforming interference fringes. This enables the calculation of the temperature distribution inside the channel. The interferograms are grabbed using a CCD camera and an AVT Fire package software. Digital image processing technique, using MATLAB software is used for locating the fringe-centers, and calculating the temperature distribution. The temperature profiles are obtained at different sections of the channel for various values of the average Reynolds number and various heating levels. The local and average heat flux values are obtained from the constructed temperature distributions. Variations of the local and average heat transfer coefficients and Nusselt number are determined and discussed. Results of parametric studies are compared and contrasted with relevant entry length solutions from the literature.

This content is only available via PDF.
You do not currently have access to this content.