Building systems as compactly as possible has been a major theme in modern science and engineering practices. However, such enthusiastic endeavor often encounters big troubles due to high cost and complexity of the process it involves. Part of the reasons comes from the methodology itself, the fabrication, designing and characterization procedure etc. Among various disciplines to making micro/nano object, those enabled from the thermal and hydrodynamic science plays a rather important role. In this article, we will illustrate a cryogenic way for realizing a group of different micro/nano devices which can be implemented as mechanical, hydraulic, electrical, or optical functional units. The basic principle of the method lies in the formation of ice crystals in small area, from which micro/nano aqueous objects or signals transmitting across them can be blocked, manipulated and analyzed. In this way, a series of micro/nano devices such as freeze tweezer, ice valve, freeze-thaw pump, electrical or optical signal switch and micro thermal analyzer etc. can be developed via a rather simple and low cost way. As examples, some latest advancement made in the authors’ lab will be reviewed. Their innovative applications in a wide variety of micro/nano engineering fields will be discussed. Further, to illustrate the low cost way to directly manufacture micro/nano objects, we will explain a bubble fabrication method whose basic principle lies in the chemical reaction occurring at the fluidic interfaces between two or more soap adjacent bubbles. A unique virtue of the bubble is that it can have a rather huge diameter however an extremely small membrane thickness, whose smallest size can even reach nano scale. Therefore, the administrated chemical reaction in the common interface of the contacting bubbles would lead to products with extremely small size. Particularly, all these results were achieved via a rather straightforward way. The bubble builds up a bridge between the macroscopic manipulation/observation and the fabrication in small world. Several typical micro structures as fabricated in the lab will be illustrated. As a flexible, easily controllable, and low cost method, the bubble fabrication can possibly be developed as a routine strategy for making micro/nano structures in the near future.
Skip Nav Destination
ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels
June 22–24, 2009
Pohang, South Korea
Conference Sponsors:
- Nanotechnology Institute
ISBN:
978-0-7918-4349-9
PROCEEDINGS PAPER
Cryogenic and Fluidic Ways Lead to Low Cost Micro/Nano Devices
Jing Liu
Tsinghua University; Chinese Academy of Sciences, Beijing, China
Yang Yang
Chinese Academy of Sciences, Beijing, China
Paper No:
ICNMM2009-82143, pp. 1329-1336; 8 pages
Published Online:
September 21, 2010
Citation
Liu, J, & Yang, Y. "Cryogenic and Fluidic Ways Lead to Low Cost Micro/Nano Devices." Proceedings of the ASME 2009 7th International Conference on Nanochannels, Microchannels, and Minichannels. ASME 2009 7th International Conference on Nanochannels, Microchannels and Minichannels. Pohang, South Korea. June 22–24, 2009. pp. 1329-1336. ASME. https://doi.org/10.1115/ICNMM2009-82143
Download citation file:
3
Views
Related Proceedings Papers
Related Articles
Model Synthesis for Design of Switched Systems Using a Variable Structure System Formulation
J. Dyn. Sys., Meas., Control (December,2003)
Valve-Plate Design for an Axial Piston Pump Operating at Low Displacements
J. Mech. Des (March,2003)
Inaugural Editorial
ASME Open J. Engineering (January,2022)
Related Chapters
Section III: Subsections NC and ND — Class 2 and 3 Components
Companion Guide to the ASME Boiler and Pressure Vessel Code, Volume 1, Third Edition
Subsection NC, ND—Class 2 and 3 Components
Companion Guide to the ASME Boiler & Pressure Vessel Code, Volume 1, Second Edition
Chitosan-Based Drug Delivery Systems
Chitosan and Its Derivatives as Promising Drug Delivery Carriers