An experimental investigation in a single silica microtube in isothermal stationary flow for various gases is made from the hydrodynamic to the near free molecular regime to study the reflection/accommodation process at the wall. This kind of investigation requires, more than other Micro-Electro-Mechanical-Systems (MEMS) experiments, a powerful experimental platform to measure very small mass flow rate. A global analytic expression, based on the Navier-Stokes (NS) equations with second order boundary conditions, is used to yield the Tangential Momentum Accommodation Coefficient (TMAC) in 0.003–0.3 Knudsen number range. Otherwise, the experimental results of the mass flow rate is compared with theoretical values calculated from kinetic approaches using variable TMAC as fitting parameter over the 0.3–30 Knudsen number range. Finally, whatever the theoretical approach the TMAC values obtained from the different gas-surface pairs are rather close one to other, but the TMAC values seem decreasing when the molecular mass increases.

This content is only available via PDF.
You do not currently have access to this content.