Attributed to its high heat transfer coefficient, evaporating cooling involving the use of micro heat exchangers is considered a possible thermal management solution for cooling of high heat flux electronic devices. The present work desires to develop high-performance micro heat exchangers operating in the evaporation regime. The pool boiling heat transfer performance on one plain plate and one micro porous coated plate were tested in a vertical open and a 1-mm confined spaces. The test results show that the heat transfer was enhanced by the confined space at low and moderate heat fluxes but degraded at high flux condition on plain surface. The micro porous coating may significantly enhance the pool boiling performance. However, the heat transfer characteristic in confined space is not exactly the same as that on open surfaces. Owing to the interaction of forced removal of the superheated liquid due to the bubble departure and retard the departure of bubbles by the confined plate, there is no much difference for pool boiling heat transfer on micro porous coated surface in confined and unconfined spaces at low and moderate heat fluxes. At high heat flux, large amount of bubbles were confined by the cover plate. This caused the partial dry out and significant degrade on heat transfer performance.

This content is only available via PDF.
You do not currently have access to this content.