This paper presents an analytical solution of the hyperbolic heat conduction equation for a finite slab that sides are subjected to arbitrary heat source, boundary, and initial conditions. In the mathematical model used in this study, the heating on both sides treated as an apparent heat source while sides of the slab assumed to be insulated. Distribution of the apparent heat source for a problem with arbitrary heating on two boundaries is solved. The solution obtained by separation of variable method using appropriate Fourier series. Being a Sturm-Liouville problem in x-direction, suitable orthogonal functions can be allocated to hyperbolic heat conduction equation depending on the type of boundary conditions. Despite ease of proposed method, very few works has been done to solve hyperbolic heat conduction problems using this method by authors. The main feature of the method is straightforward formulation. In the analysis of heat conduction involving extremely short times, the parabolic heat conduction equation breaks down. By increasing the applications of the fast heat sources such as laser pulse for annealing of semiconductors and high heat flux applications, the need for adequate model of heat conduction has arisen. The hyperbolic heat conduction equation eliminates the paradox of an infinite speed of propagation of thermal disturbances which contradicts with Einstein’s theory of relativity. Moreover, it describes the highly transient temperature distribution in a finite medium more accurately.

This content is only available via PDF.
You do not currently have access to this content.