The elastic continuum model is resorted to study the lattice specific heat of individual crystalline silicon nanowires with 22 and 37 nm in diameter. Incorporating both longitudinal and transverse modes, a model based on the power-law phonon dispersion is developed to illustrate the characteristics of phonon density of states (DOS) in bulk and low-dimensional systems. The results show that there exist multiple and explicit van Hove singularities for thin wire and step-like enhancement for thin film, attributing to the quantized phonon modes in the particular dimensionality. Furthermore, we examine the phonon dispersion and DOS of silicon nanowires and find infinite phonon branches. A cutoff frequency based on the reduced phonon group velocity is defined to guarantee that the phonon wavelength can not be shorter than the lattice constant. The softening of vibrational modes in low-frequency region and the deficit in high-frequency region occur, resulting in the excess specific heat of silicon nanowire compared with that of bulk silicon. This phenomena becomes more significant at low temperatures. In addition, the dependence of specific heat of nanowires on temperature departs from that of bulk material in view of the quasi one-dimensional feature. Qualitative support is presented to our present work.
Skip Nav Destination
ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels
June 23–25, 2008
Darmstadt, Germany
Conference Sponsors:
- Nanotechnology Institute
ISBN:
0-7918-4834-5
PROCEEDINGS PAPER
Specific Heat of Individual Silicon Nanowires
Xing Zhang
Xing Zhang
Tsinghua University, Beijing, China
Search for other works by this author on:
Bo Feng
Tsinghua University, Beijing, China
Zhixin Li
Tsinghua University, Beijing, China
Xing Zhang
Tsinghua University, Beijing, China
Paper No:
ICNMM2008-62020, pp. 499-504; 6 pages
Published Online:
June 11, 2009
Citation
Feng, B, Li, Z, & Zhang, X. "Specific Heat of Individual Silicon Nanowires." Proceedings of the ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels. ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels. Darmstadt, Germany. June 23–25, 2008. pp. 499-504. ASME. https://doi.org/10.1115/ICNMM2008-62020
Download citation file:
7
Views
Related Proceedings Papers
Related Articles
Thermal Transport in Nanostructured Solid-State Cooling Devices
J. Heat Transfer (January,2005)
Hierarchical
Modeling of Heat Transfer in Silicon-Based Electronic
Devices
J. Heat Transfer (October,2010)
Modeling Carrier-Phonon Nonequilibrium Due to Pulsed Laser Interaction With Nanoscale Silicon Films
J. Heat Transfer (August,2010)
Related Chapters
Analysis of Optical Properties of Silicon Nanowire Arrays Using Effective Medium Theory
International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3
Studies Performed
Closed-Cycle Gas Turbines: Operating Experience and Future Potential
Fabrication of MSM UV Detector Using ZnO Nanowires
International Conference on Computer and Electrical Engineering 4th (ICCEE 2011)