In this work, the mesoscale approach of two-dimensional lattice Boltzmann method (LBM) has been employed to study droplet collision with a dry wall. The impact of drops with solid walls is simulated by using the pseudo-potential method of LBM. Simulations have been conducted for 2<We<162, and it is shown that the maximum spreading of the drop on the solid surface depends on the surrounding density, velocity of impact, surface tension, and the surface wetting characteristics. For a short time interval right after the impact the spreading diameter is shown to follow a parabolic dependence with time. The spread factor is seen to be higher as the Weber number increases. Under certain conditions when the drop has a high impact velocity and/or low surface tension, the kinetic energy of impact dominates over the dissipation and surface energy, leading to breakup of the drop into smaller drops. This breakup is shown to depend upon the wetting/non-wetting nature of the surface used. The spread factor is found to be a maximum at the time of breakup.
Skip Nav Destination
ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels
June 23–25, 2008
Darmstadt, Germany
Conference Sponsors:
- Nanotechnology Institute
ISBN:
0-7918-4834-5
PROCEEDINGS PAPER
Simulation of Droplet Flows Using Lattice Boltzmann Method
Amit Gupta,
Amit Gupta
University of Central Florida, Orlando, FL
Search for other works by this author on:
Ranganathan Kumar
Ranganathan Kumar
University of Central Florida, Orlando, FL
Search for other works by this author on:
Amit Gupta
University of Central Florida, Orlando, FL
Ranganathan Kumar
University of Central Florida, Orlando, FL
Paper No:
ICNMM2008-62372, pp. 397-407; 11 pages
Published Online:
June 11, 2009
Citation
Gupta, A, & Kumar, R. "Simulation of Droplet Flows Using Lattice Boltzmann Method." Proceedings of the ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels. ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels. Darmstadt, Germany. June 23–25, 2008. pp. 397-407. ASME. https://doi.org/10.1115/ICNMM2008-62372
Download citation file:
23
Views
Related Proceedings Papers
Related Articles
Dynamic Spreading of a Droplet Impinging on Micro-Textured Surfaces
J. Heat Transfer (August,2011)
Determination of the Drop Size During Air-Blast Atomization
J. Fluids Eng (December,2019)
Drop Impact Variation at the Extremes of Wettability
J. Heat Transfer (August,2016)
Related Chapters
Pin Floating on Surface of a Liquid
Case Studies in Fluid Mechanics with Sensitivities to Governing Variables
Small Raindrops
Case Studies in Fluid Mechanics with Sensitivities to Governing Variables
Role of Surface Analysis
Micro and Nanotribology