The drag and lift forces acting on a rotating impenetrable spherical suspended nano-particle in a homogeneous uniform flow are numerically studied by means of a three-dimensional numerical simulation with slip boundary condition. The effects of both the slip coefficient and rotational speed of the nanosphere on the drag and lift forces are investigated for Reynolds numbers in the range of 0.1 < Re < 100. Increase of rotation increases the drag and lift force exerted by flow at the surface of nano-sphere. By increasing slip coefficient the values of drag and lift coefficients decreases. At full slip condition, rotation of the nano-sphere has not significant effects on the drag and lift coefficient values moreover the lift coefficient of flow around the rotating spherical particle will be vanished. Present numerical results at no-slip condition are in good agreements with certain results of flow around of rotating sphere.

This content is only available via PDF.
You do not currently have access to this content.