Droplet-based microfluidics provide a powerful platform for high-throughput operations applied in micro analytics, micro reaction technology and live sciences. Todays research interests focus on the development of highly integrated fluidic networks for sample processing according to a microchemical or microanalytical protocol. Normally, fluidic networks with integrated fluidic loops and bypasses are very complicated systems that require a huge effort for external control and integration of actor components. In contrast, in droplet-based microfluidics interface generated forces can be used to temporarily seal bypasses or to generate well defined pressure gradients at strictures. This potential can be used to implement self-control and self-synchronization at functional nodes in order to minimize the effort for external control and actors integration. Here we report on progress in development of functional nodes for self-synchronized 1:1 coalescence of two independently generated droplet sequences at a Y-shaped junction and on approaches for droplet aliquotation at a Y-shaped bifurcation. The droplet connector automatically balances the time delay between two droplets arriving at the junction. On this account, strictures are integrated into the Y-junction and an additional bypass connects the arriving channels. The first arriving droplet stops at the stricture until its fusion partner arrives. The droplet splitter performs an 1:1 aliqoutation of all elements of a droplet sequence. The main challenges are the balancing of pressure differences at the outlets and the correct aliquotation of droplets independent of their volume at a wide range of flow rates. The splitter design is based on the rule that forces required for splitting are always lower than the forces required for complete droplet inflow into only one of the outlet channels without splitting.
Skip Nav Destination
ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels
June 23–25, 2008
Darmstadt, Germany
Conference Sponsors:
- Nanotechnology Institute
ISBN:
0-7918-4834-5
PROCEEDINGS PAPER
Application of Self-Control in Droplet-Based Microfluidics
Mark Kielpinski,
Mark Kielpinski
Institute of Photonic Technology, Jena, Germany
Search for other works by this author on:
Danie´ll Malsch,
Danie´ll Malsch
Institute of Photonic Technology, Jena, Germany
Search for other works by this author on:
Nils Gleichmann,
Nils Gleichmann
Institute of Photonic Technology, Jena, Germany
Search for other works by this author on:
Gu¨nter Mayer,
Gu¨nter Mayer
Institute of Photonic Technology, Jena, Germany
Search for other works by this author on:
Thomas Henkel
Thomas Henkel
Institute of Photonic Technology, Jena, Germany
Search for other works by this author on:
Mark Kielpinski
Institute of Photonic Technology, Jena, Germany
Danie´ll Malsch
Institute of Photonic Technology, Jena, Germany
Nils Gleichmann
Institute of Photonic Technology, Jena, Germany
Gu¨nter Mayer
Institute of Photonic Technology, Jena, Germany
Thomas Henkel
Institute of Photonic Technology, Jena, Germany
Paper No:
ICNMM2008-62325, pp. 1565-1570; 6 pages
Published Online:
June 11, 2009
Citation
Kielpinski, M, Malsch, D, Gleichmann, N, Mayer, G, & Henkel, T. "Application of Self-Control in Droplet-Based Microfluidics." Proceedings of the ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels. ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels. Darmstadt, Germany. June 23–25, 2008. pp. 1565-1570. ASME. https://doi.org/10.1115/ICNMM2008-62325
Download citation file:
12
Views
Related Proceedings Papers
Related Articles
Modeling and Simulation of Capillary Microfluidic Networks Based on Electrical Analogies
J. Fluids Eng (May,2011)
Effects of Junction Angle and Viscosity Ratio on Droplet Formation in Microfluidic Cross-Junction
J. Fluids Eng (May,2016)
Numerical Investigation of Droplet Generation Within a Microfluidic T-Junction With Semicylindrical Obstacle
J. Fluids Eng (January,2023)
Related Chapters
Towards Real-Time Optical Measurement of Microbubble Content in Hydrodynamic Test Facilities
Proceedings of the 10th International Symposium on Cavitation (CAV2018)
Boundary Layer Analysis
Centrifugal Compressors: A Strategy for Aerodynamic Design and Analysis
Control and Operational Performance
Closed-Cycle Gas Turbines: Operating Experience and Future Potential