As electronics devices continue to increase in thermal dissipation, novel methods will be necessary for effective thermal management. Many macro-scale enhancement techniques have been developed to improve internal flow heat transfer, with a dimple feature being particularly promising due to its enhanced mixing with potentially little pressure penalty. However, because dimples may be difficult to fashion in microchannels, two-dimensional grooves are considered here as a similar alternate solution. Computational fluid dynamics methods are used to analyze the flow and thermal performance for a groove-enhanced microchannel, and the effectiveness is determined for a range of feature depths, diameters, and flow Reynolds numbers. By producing local impingement and flow redevelopment downstream of the groove, thermal enhancements on the order of 70% were achieved with pressure increases of only 30%. Further optimization of this concept should allow the selection of an appropriate application geometry, which can be studied experimentally to validate the concept.

This content is only available via PDF.
You do not currently have access to this content.