The standard Direct Simulation Monte Carlo (DSMC) simulation is not capable of producing statistically meaningful results for low Re flows which are often encountered in micro-flows. Therefore, the non-isothermal Information Preservation (IP) algorithm is utilized in this study to predict the flow structure and the heat transfer characteristics of a microscale, slot, and confined jet impinging on a flat surface with uniform temperature boundary condition. The flow Knudsen number based on the slot width is in the slip flow and the lower transition regime. The jet is impinging at jet-to-target surface gaps normalized by slot width (H/W) of 0.25, 1 and 2 at a pressure ratio of 2.0. The effects of impingement gap (H/W) on flow structure and heat transfer are investigated. The velocity, pressure and Nusselt number distributions on the impingement target surface are presented. The results are compared to corresponding conventional large-scale values.

This content is only available via PDF.
You do not currently have access to this content.