Present day microfluidics widely uses electrokinetic effects like eletrosmosis and electrophoresis to achieve flow control. These methods require extensive micromachining processes. Also, the fabrication of valves and valve-seats is difficult, which frequently leads to leakages and eventual breakdown of the system. This paper introduces the use of ferrofluids as an alternative for flow control in microchannels. Numerical simulation of flow through a microchannel using a ferrofluid in the presence of an external magnetic field is performed by coupling the flow and magnetic phenomena. An additional term calculated from the ferrofluid magnetization equations, is introduced in the Navier-Stokes equations to account for the magnetic force. The maximum velocity in a magnetically driven flow is shown to be a linear function of magnitude of magnetization of the permanent magnet. Further, the insertion of micron-size magnetic particles (referred here as magnetic plugs) in the flow field has been discussed. These plugs can be used to provide appropriate barriers to the flow by controlling their movement externally. Using the combination of ferrofluid and magnetic plugs, flow control can be achieved by the variation of external magnetic field alone.

This content is only available via PDF.
You do not currently have access to this content.