Effectiveness of the microchannel heat sink cooled by nanofluids with various particle volume fractions is investigated numerically using the latest theoretical models for conductivity and viscosity of the nanofluids. Both laminar and turbulent flows are considered in this research. The model of conductivity used in this research accounts for the fundamental role of Brownian motion of the nanoparticles which is in good agreement with the experimental data. The changes in viscosity of the nanofluid due to temperature variation are considered also. Final results are compared with the experimental measurements for heat transfer coefficient and pressure drop in microchannel. Enhancement in heat transfer is achieved for laminar flow with increasing of volume fraction of Al2O3 nanoparticles. But for turbulent flow an enhancement of heat removal was not seen and using higher volume fractions of nanoparticles increases the maximum substrate temperature. Pressure drop is increased with using nanofluids because of the augmentation in the viscosity and this increase is more noticeable in higher Reynolds numbers.

This content is only available via PDF.
You do not currently have access to this content.